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Objectives Our overall goal is to develop, implement and transfer accurate new
numerical methods for solving moving boundary problems in materials science. We
have three specific objectives:

e Combine semi-Lagrangian time stepping, accurate contouring and fast geomet-
ric algorithms to develop and implement accurate, efficient and general new
methods for moving sharp interfaces.

e Develop a fast modular moving interface code for transfer to other researchers,
labs, and industry.

e Build efficient, accurate and general integral solvers for coupled nonlinear sys-
tems of Poisson and heat equations modeling common material phenomena, and
couple these solvers to our modular moving interface code.

Status of Effort We have attained our first objective—an accurate, efficient and
general moving interface method—with the semi-Lagrangian contouring method re-
ported in Publication [P1]. We are developing a portable C code with fast accurate
contouring techniques based on deferred correction schemes, and fast PDE solvers
based on integral equation techniques, to complete our second and third objectives.

Accomplishments Our work on moving interface problems in materials science
combines fast PDE solvers such as boundary integral methods with fast geometric
algorithms and semi-Lagrangian implicit representations to build effective new nu-
merical methods. '

We developed an implicit boundary integral method for computing periodic den-
drite formation in the symmetric model of unstable solidification [7] and fast algo-
rithms for evaluating heat potentials [2] which speeded up our method by several
orders of magnitude. In [6], we combined the boundary integral method of [7] with
fast algorithms from [2,3,8] and the level set method of [4]: the level set method han-
dled topological changes effectively while fast boundary integral techniques ensured



accuracy and efficiency in the velocity evaluation. We developed and analyzed effi-
cient and accurate new vortex methods for modeling convection in the melt [4,10,11],
together with new error analyses [12] and quadrature rules [9] for general integral
equations. Since 1999, we have focused on the development and implementation of
highly effective new numerical methods for general moving interface problems and
widely applicable subsidiary computations. We summarize three projects below: the
fast modular semi-Lagrangian method for general moving interfaces (described in
Publications [P1,P2] and references [13-16]), accurate contouring methods in two and
three dimensions, and fast solution of two-point boundary value problems [P3,P4].

Moving interface problems A moving interface is a collection I'(t) of noninter-
secting oriented closed curves (in R2) or surfaces (in R®). A sufficiently smooth
moving interface has an outward unit normal vector N, a mean curvature C, and a
normal velocity vector VIN. A moving interface problem specifies VN as a functional
of T'(¢). Examples include passive transport V = N - F where F(z,t) is given, geo-
metric motion V = p(f) — ¢(f)C where cos§ = N - &, Ostwald ripening V' = [g—}\‘,],
where u solves the Laplace equation Au = 0 off I'(¢) and v = C on I'(t), and models
for crystal growth V = [—g%], where u solves the heat equation u; = Au off I'(t) with

the geometric boundary condition u = f(N,C, V) on I'(?).

The implicit approach Any moving interface problem can be reformulated as a
PDE for a function ¢ whose zero set is I'(f). The normal, curvature and velocity are
then

Vo etV
—_— C=-V-N, VN = ——.
IVell Vel
Given an extension of VN off ['(¢) to a globally defined function W, we can regard
the VN formula as a PDE for ¢:

(pt—-W-V<p=0.

N =

We solve this equation on an adaptive quadtree mesh to eliminate the cost of going
up a dimension. Correct viscosity solutions are obtained by semi-Lagrangian time
stepping with exact distancing and large time steps. A general problem-independent
velocity extension makes our method modular and easy to apply.

Semi-Lagrangian methods The semi-Lagrangian “CIR” method [1] solves ¢; —
F(z,t) - Vo = 0 by the following algorithm: at each z in the grid, move x back
with velocity F(z,t,) to s = z + kF(z,t,); interpolate ¢(z,t,) to the point s; set
©(x,t,41) equal to the interpolated value. Our second-order time stepping scheme
couples a CIR predictor with a trapezoidal corrector using the velocity evaluated
from the CIR approximation. It combines the unconditional stability of CIR with
the dramatically reduced dissipation of the trapezoidal rule. Interpolation error is
eliminated by exact distance finding in a dynamic quadtree data structure.

We first tested the semi-Lagrangian approach in [13] by solving level set equations
with a fixed uniform mesh and ENO differencing. Second, we developed an efficient




new redistancing technique with the aid of a new quadtree structure whose cells know
the signed distance to nearby elements of I'(t). The quadtree is built in O(N log N)
work by a three-step recursive search procedure. Computations of moderate complex-
ity are speeded up 400 times, while redistancing the CIR method on a uniform mesh
costs considerably less than moving ¢ one step [14]. Third, the semi-Lagrangian
method of [15] combined CIR with an adaptive quadtree mesh to build a method
which is not only accurate and robust but also optimally efficient: an interface I'(t)
with N degrees of freedom costs only O(N log N) to move one step. Efficiency is
further enhanced by the unconditional stability of the semi-Lagrangian time stepping
scheme: large time steps £ = O(h) can be taken even on refined meshes. The tree
mesh is refined with a functional approach: given a signed distance function ¢(z,1,),
we build a tree at time t,4; = t, + k by recursive evaluation of (2, tnt1) = @(5,tn)
at projected points s = x + kF(z,t,). The criterion for splitting a tree cell is simple:
the values of ¢(x,t,41) on the cell are smaller than the size of the cell.

Our semi-Lagrangian method for moving interfaces [16] combines efficient exact
quadtree-based redistancing, stable second-order semi-Lagrangian time stepping, a
modular problem-independent velocity extension, and exact ¢ interpolation in the
CIR scheme. The velocity extension technique evaluates the nearest-point extension
on a distance tree, builds a continuous interpolant, and ‘satisfies a maximum principle.
Our method resolves and moves complex interfaces at optimal cost with time steps
unconstrained by numerical stability. It is a “black-box” method for moving inter-
faces, which accepts the interface and its velocity at time ¢ and returns the evolved
interface one time step later. Such methods simplify moving interfaces, because the
numerics are independent of the physical problem driving the interfacial motion. Nu-
merical results show that the method converges to correct viscosity solutions even for
difficult moving interface problems involving merging, faceting, transport, nonlocality
and anisotropic curvature-dependent geometry.

A fast semi-Lagrangian contouring method [P1] General moving interface
problems are solved in [P1] by a new approach: extract the moving interface from
an explicit semi-Lagrangian advection formula with efficient geometric algorithms
and fast accurate contouring techniques. A modular adaptive implementation with
fast new geometry modules computes highly accurate solutions to moving interface
problems involving merging, anisotropy, faceting, curvature, dynamic topology and
nonlocal interactions of PDE type. Exact geometric algorithms are tuned for speed;
velocity evaluation and time stepping are efficiently decoupled from interface reso-
lution; fast new contouring techniques dramatically increase overall accuracy. An
efficient adaptive framework combines the high resolution of front tracking with the
topological robustness of implicit representations. Currently three projects are un-
derway: application to nonlocal problems such as Ostwald ripening, development of
accurate general contouring schemes in two and three dimensions, and fast high-order
solution of two-point boundary value problems.




Ostwald ripening [P2] We are building fast nonlocal velocity evaluation modules
for the standard moving interface problems of materials science. The simplest example
is Ostwald ripening, which models the growth of larger solid drops by evaporation
from smaller drops with total solid volume conserved. The velocity V is the normal
derivative [g—;(,] of the function u which is harmonic off I'(¢) and equal to the curvature
on I'(t). We evaluate this nonlocal velocity by solving the integral equation of classical
potential theory and applying the Dirichlet to Neumann operator. The solution u is
a double layer potential
0K (z,y)
Du(a) = [ e )y

of an unknown density y on T' = I'(¢), with K(z,y) = o log|lz — || the free-space
Green function for the two-dimensional Laplace equation. The density p solves the
integral equation

%“(‘”) +/F§;{—A(;z‘?;)i)u(y)dy= C(z), «wel.

Once p is found, it is convenient to view the harmonic function u as the real part of an
analytic function U. The Cauchy-Riemann equations then yield V' as the tangential
derivative of the imaginary part of U, which is easier to compute than the normal
derivative of the real part u. Discretization of this formulation is highly accurate if
the interface is represented by equidistant points in arclength. Detailed resolution
of the interface requires many points, so fast algorithms such as the fast multipole
method play an important role.

Accurate contouring The general problem of finding a smooth geometrically con-
strained approximate zero set of a function which can be evaluated at arbitrary points
occurs frequently in computational science and requires a robust general contouring
package. An ideal contouring package would accept function values (and derivatives
if available) at arbitrary points and produce a piecewise-smooth approximation to
the zero set with corners where necessary. Geometric constraints such as bounds
on curvature away from corners are vital in applications such as computer-controlled
machining, and pose a major complication for existing public-domain contouring soft-
ware. We are developing a generally useful package for constrained piecewise-smooth
contouring of scattered data in two and three dimensions, based on new methods of
scattered data interpolation and a new floating-point stability analysis of the con-
touring problem.

Deferred correction solvers for boundary value problems [P3,P4] Contour-
ing on a subdomain requires the solution of a two-point boundary value problem for
the curve connecting known zeroes on the subdomain boundary. Thus we have de-
veloped efficient and accurate new deferred correction techniques for the solution of
the two-point boundary value problem

Y = Clt)y+ft), a<t<b
Ay(a) + By(b) = ¢




for a vector-valued function y : [a,b] — RY. Deferred correction is a strategy of
systematically promoting a low-order scheme such as the midpoint rule to an efficient
high-order scheme, by applying the same basic scheme to solve an equation for the
error in terms of the residual. The error equation is solved efficiently by repeated
use of a highly stable block arrowhead QR factorization. This approach yields stable,
efficient and highly accurate schemes of orders up to 20, with naturally adapted grids.
Fig. 1 illustrates the speed and accuracy of these schemes, applied to difficult and
singular problems which challenge standard packages [P3]. A new convergence theory
confirms these experimental results [P4].

The future Planned future developments include higher-order accurate contouring
and boundary representations with constrained geometry, three-dimensional imple-
mentation, and applications to PDE-type problems where the moving interface is
coupled to complex materials science.
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Figure 1: Grid with solution, derivative, and correct digits vs. logarithm of CPU time
for adaptive deferred correction schemes of orders 2 through 20, applied to Bessel
functions, Airy functions, and parabolic cylinder functions with a singular cusp.




